PayPal-donate (Wiki).png
O ile nie zaznaczono inaczej, prawa autorskie zamieszczonych materiałów należą do Jana Woreczko & Wadi.

(Unless otherwise stated, the copyright of the materials included belong to Jan Woreczko & Wadi.)


Mezö-Madaras

Z Wiki.Meteoritica.pl

(Różnice między wersjami)
Linia 8: Linia 8:
  | mbclass = fall
  | mbclass = fall
  | metbull = 16628
  | metbull = 16628
-
  | lokalizacja = Harghita, [[Rumunia]]
+
  | lokalizacja = Mădăraş, county Mureş, Harghita, [[Rumunia]]
  | położenie = 46°30'N, 25°44'E
  | położenie = 46°30'N, 25°44'E
  | data = 4 września 1852 roku, 16:30 (sobota)
  | data = 4 września 1852 roku, 16:30 (sobota)
  | typ = chondryt zwyczajny L3.7
  | typ = chondryt zwyczajny L3.7
-
  | masa = 22,7 kg, największy okaz 10,1 kg
+
  | masa = 22,7 kg<ref name="TKW">szacuje się, że spadło 50-60&nbsp;kg</ref>, największy okaz 10,1&nbsp;kg<ref name="10,1kg">największy okaz (fragment) 10,1&nbsp;kg (18 funtów) znajduje się w&nbsp;Muzeum Historii Naturalnej w&nbsp;Wiedniu</ref>
  | liczba = deszcz meteorytów
  | liczba = deszcz meteorytów
  | uwagi =
  | uwagi =
  | cechy =
  | cechy =
-
  | synonimy = w NHM Cat: '''Fekete''', '''Madaras''', '''Maros''', '''Mezoe-Madaras''', '''Mezö-Madarasz''', '''Weiler'''; po węgiersku: Mezőmadarasi
+
  | synonimy = w NHM Cat: '''Fekete''', '''Madaras''', '''Maros''', '''Mezoe-Madaras''', '''Mezö-Madarasz''', '''Weiler'''; po&nbsp;węgiersku: Mădăraş (Mezőmadaras)
}}
}}
 +
 +
Spadek deszczu meteorytów 4 września 1852 roku (sobota) w okolicy miejscowości Mădăraş w [[Rumunia|Rumunii]] (chondryt zwyczajny, rzadki typ L3.7, TKW 22,7 kg<ref name="TKW"></ref>).
Nie ma informacji o ewentualnych późniejszych znaleziskach okazów z&nbsp;tego spadku.
Nie ma informacji o ewentualnych późniejszych znaleziskach okazów z&nbsp;tego spadku.
Linia 26: Linia 28:
! Zbiór !! waga okazów<br />(Koblitz MetBase) !! uwagi
! Zbiór !! waga okazów<br />(Koblitz MetBase) !! uwagi
|-
|-
-
| Vienna, Naturhist. Mus. || 8,96 kg
+
| Vienna, Naturhist. Mus. || 8,96 kg || (main mass)<ref name="10,1kg"></ref>
|-
|-
-
| Berlin, Mus. Naturk., Humboldt Univ. || 2,72 kg
+
| Berlin, Mus. Naturk., Humboldt Univ. || 2,72&nbsp;kg ||
|-
|-
-
| Budapest, Nat. Mus. || 1813 g
+
| Budapest, Nat. Mus. || 1813 g || [[:Image:Mezo-Madaras_(MHN_Budapeszt).jpg|fotografia okazu]]
|-
|-
-
| Tübingen, Min.-Petrogr. Inst. || 1642 g
+
| Tübingen, Min.-Petrogr. Inst. || 1642&nbsp;g ||
|-
|-
-
| London, Nat. Hist. Mus. || 700 g
+
| London, Nat. Hist. Mus. || 700 g ||
|-
|-
-
| Moscow, Acad. Sci. || 612 g
+
| Moscow, Acad. Sci. || 612 g ||
|-
|-
-
| Tempe, Arizona State Univ. || 555 g
+
| Tempe, Arizona State Univ. || 555 g ||
|-
|-
-
| Calcutta, Mus. Geol. Surv. India || 538 g
+
| Calcutta, Mus. Geol. Surv. India || 538&nbsp;g ||
|-
|-
-
| Budapest, Eötvös Lorand Univ. || 435 g
+
| Budapest, Eötvös Lorand Univ. || 435 g ||
|-
|-
| {{Wielokropek}}
| {{Wielokropek}}
Linia 61: Linia 63:
}}
}}
{{GEIcon-PointRed}}
{{GEIcon-PointRed}}
-
(M)  
+
(M) Mădăraş
-
 
+
{{GEIcon-Water}}
 +
Jezioro ''Isten-tó''
{{GEFrame-end}}
{{GEFrame-end}}
 +
 +
Bolid poruszał się w kierunku SW-NE. Towarzyszyły mu wybuchy i dudniące grzmoty (słyszane były w miejscowościach od Alba Iulia, Aiud, Turda, Cluj-Napoca do Târgu Mureş, Reghin). Deszcz meteorytów spadł w eliptycznym obszarze o długości ~10 km i ok. 4 km szerokości. Świadkowie pracujący w pobliżu jeziora Isten (''Isten-tó''), słyszeli świst i widzieli kamienie spadające do południowej części jeziora. Wielkość okazów wzrosła z SW na NE.
<br clear="all"/>
<br clear="all"/>
Linia 86: Linia 91:
* {{Grady (2000)}}
* {{Grady (2000)}}
 +
 +
* {{Knöpfler (1854)}}
* {{Koblitz MetBase}}
* {{Koblitz MetBase}}
-
{{Koblitz References | 1=After the appearance of a luminous meteor, and detonations, a shower of many stones fell, of which the largest weighed about 10kg and the total weight was about 22.7kg, W.Knöpfler, Verh. Mitt. Siebenbürg. Ver. Naturwiss., Hermannstadt, 1853, 4, p.19, M.H.Hey, Cat. Met., 1966, p.303. Analysis, C.Rammelsberg, Ber. Deutsch. Geol. Gesell. Berlin, 1871, 23, p.734. Porosity and density, K.Keil, Chem. Erde, 1962, 22, p.281; see also, D.T.Britt and G.J.Consolmagno, MAPS, 2003, 38, p.1161. Study of Fe-rich silicates, contains merrihueite, R.T.Dodd et al., Am. Miner., 1966, 51, p.1177. Kr isotopic composition, O.Eugster et al., Earth Planet. Sci. Lett., 1967, 2, p.385. A polymict breccia, W.R.Van Schmus, GCA, 1967, 31, p.2027. Mineralogy and composition of xenoliths, R.A.Binns, GCA, 1968, 32, p.299. Analysis, 21.6% total Fe, E.Jarosewich, GCA, 1967, 31, p.1103. Unequilibrated and unmetamorphosed, G.Kurat, GCA, 1967, 31, p.1843, Meteorite Research, ed. P.M.Millman, D.Reidel, Dordrecht-Holland, 1969, p.185. Modal analysis, G.Dörfler and H.G.Hiesböck, Meteorite Research, ed. P.M.Millman, D.Reidel, Dordrecht-Holland, 1969, p.669. Li isotopic composition, R.Bernas et al., Meteorite Research, ed. P.M.Millman, 1969, p.123. Al-26 data, K.Fuse and E.Anders, GCA, 1969, 33, p.653. Volatile trace element abundances, R.R.Keays et al., GCA, 1971, 35, p.337; see also, D.R.Case et al., GCA, 1973, 37, p.19. Uranium content, D.E.Fisher, GCA, 1972, 36, p.15. Partial INAA, R.A.Schmitt et al., Meteoritics, 1972, 7, p.131. Contains spinels, G.Hoinkes and G.Kurat, Meteoritics, 1973, 8, p.383 (abs.). Pb isotopic ratios, G.R.Tilton, Earth Planet. Sci. Lett., 1973, 19, p.321. Ga and Ge contents of metal phase, C.-L.Chou and A.J.Cohen, GCA, 1973, 37, p.315. Infrared photometry, albedo, JHK colors, M.Leake et al., Meteoritics, 1978, 13, p.101. Size frequency distributions of fluid drop chondrules, T.V.V.King and E.A.King, Meteoritics, 1979, 14, p.91. Ti, Zr and Hf abundances, M.Shima, GCA, 1979, 43, p.353. Metallographic cooling rate, E.R.D.Scott and R.S.Rajan, LPSC, 1980, 11, p.1015 (abs.). Ni and Co contents of matrix kamacite, F.Afiattalab and J.T.Wasson, GCA, 1980, 44, p.431. Subclassification, TL data, C.L.Melcher et al., Meteoritics, 1980, 15, p.332 (abs.); see also, E.Anders and M.G.Zadnik, GCA, 1985, 49, p.1281. Study of fine-grained, opaque silicate matrix, G.R.Huss et al., GCA, 1981, 45, p.33. Study of metal grains in host and lithic fragments, E.R.D.Scott and R.S.Rajan, GCA, 1981, 45, p.53. Study of shock hardening of kamacite and taenite, P.Lambert et al., LPSC, 1981, 12, p.583 (abs.). Pb isotopic composition, D.M.Unruh et al., LPSC, 1981, 12, p.1109 (abs.). Magnetic properties, N.Sugiura and D.W.Strangway, Mem. Nat. Inst. Polar Res., Tokyo, 1982, (25), p.260. Carbon content and isotopic composition, M.M.Grady et al., J. Geophys. Res., 1982, 87 (suppl.), p.A289; see also, Meteoritics, 1989, 24, p.147, J.Makjanic et al., Meteoritics, 1993, 28, p.63. D/H ratio, N.J.McNaughton et al., J. Geophys. Res., 1982, 87 (suppl.), p.A297. Cooling rate calculation for metal-troilite grains, E.R.D.Scott, GCA, 1982, 46, p.813. Chemical composition and texture of matrix and chondrule rims, S.Matsunami, Mem. Nat. Inst. Polar Res., Tokyo, 1984, (35), p.126. Analysis of phosphate-bearing microspherules, H.Yabuki and A.El Goresy, Mem. Nat. Inst. Polar Res., Tokyo, 1986, (41), p.235. Study of silica-bearing clast, C.A.Brigham et al., GCA, 1986, 50, p.1655. Siderophile element data, D.W.G.Sears and K.S.Weeks, GCA, 1986, 50, p.2815. Grain size and texture of chondrule populations, P.C.Buchanan, LPSC, 1988, 19, p.142 (abs.). Mössbauer analysis of iron oxidation, T.C.Solberg and R.G.Burns, LPSC, 1988, 19, p.1103 (abs.). Study of carbon-bearing inclusion, M.Christophe Michel-Levy, Meteoritics, 1988, 23, p.45. Petrofabrics and magnetic anisotropy, D.S.Sneyd et al., Meteoritics, 1988, 23, p.139. Mineralogy and oxygen isotopic data of matrix lumps, C.E.Nehru et al. Meteoritics, 1991, 26, p.377 (abs.). Study of alkali fractionation among chondrules, J.A.Wood, Meteoritics, 1991, 26, p.410 (abs.). Oxygen isotopic composition, R.N.Clayton et al., GCA, 1991, 55, p.2317. Bulk density and porosity, M.Terho et al., Studia Geophysica et Geodaedica, 1993, 37, p.65; see also, D.T.Britt and G.J.Consolmagno, MAPS, 2003, 38, p.1161. Listed, with find location, Y.Miura et al., Papers 19th Symp. Ant. Met., NIPR Tokyo, 1994, p.5. Tl and Pb abundances, J.H.Chen and G.J.Wasserburg, LPSC, 1994, 25, p.245. Study of slica-roedderite-bearing chondrule, A.N.Krot and J.T.Wasson, Meteoritics, 1994, 29, p.707. Noble gas composition of high-purity separates of presolar diamonds, G.R.Huss and R.S.Lewis, Meteoritics, 1994, 29, p.791. REE abundance pattern, K.Shinotsuka and M.Ebihara, LPSC, 1995, 26, p.1293 (abs.). Noble gas analyses of acid-resistant residue, diamond and SiC contents, G.R.Huss and R.S.Lewis, GCA, 1995, 59, p.115. Potassium isotopic composition, M.Humayun and R.N.Clayton, GCA, 1995, 59, p.2131. Nitrogen and noble gas isotopic composition, K.Hashizume and N.Sugiura, GCA, 1995, 59, p.4057. Volatile abundances and release temperatures, D.W.Muenow et al., Meteoritics, 1995, 30, p.639. Isotopic molecule mass compositions of nitrogen, N.Sugiura et al., Meteoritics, 1995, 30, p.646. Analysis of P1 noble gases in acid residues by stepped pyrolysis, G.R.Huss et al., GCA, 1996, 60, p.3311. Carbon and nitrogen isotopic composition of graphite grains measured by SIMS, N.Sugiura and K.Kiyota, Papers 22nd Symp. Ant. Met., NIPR Tokyo, 1997, p.171 (abs.); see also, MAPS, 1997, 32, p.A126 (abs.). Sm and Gd isotopic composition, H.Hidaka et al., MAPS, 1997, 32, p.A59 (abs.). Light stable isotope composition of graphite-bearing assemblages, S.Mostefaoui et al., MAPS, 1997, 32, p.A94 (abs.). Hydrogen, carbon, and nitrogen isotopic composition of graphite, N.Sugiura and K.Kiyota, Papers 23rd Symp. Ant. Met., NIPR Tokyo, 1998, p.139 (abs.) Nitrogen and Argon isotopic composition, N.Sugiura et al., MAPS, 1998, 33, p.463. Analysis of oxygen isotopes in graphite, S.Mostefaoui et al., MAPS, 1998, 33, p.A113 (abs.). Nitrogen isotopic composition of graphite aggregates, K.Kiyota and N.Sugiura, LPSC, 1999, 30, abs. #1240. Determination of bulk density, S.L.Wilkison and M.S.Robinson, MAPS, 2000, 35, p.1203. Zr isotopic composition, M.Schönbächler et al., LPSC, 2002, 33, abs. #1283. Te isotopic composition, M.A.Fehr et al., LPSC, 2003, 34, abs. #1655. Magnetic susceptibility, P.Rochette et al., MAPS, 2003, 38, p.251. Nitrogen abundance and isotopic composition of metal phase, K.J.Mathew et al., GCA, 2005, 69, p.753. 144Nd, 147Sm and uranium isotopic composition, C.H.Stirling et al., GCA, 2005, 69, p.1059. Ag isotopes and Pd/Ag ratios, S.J.Woodland et al., GCA, 2005, 69, p.2153. Sn and Te abundances and Te isotopic composition, M.A.Fehr et al., GCA, 2005, 69, p.5099. Morphology and isotopic composition of graphite, S.Mostefaoui et al., MAPS, 2005, 40, p.721. Mössbauer and X-ray diffraction study, O.N.Menzies et al., MAPS, 2005, 40, p.1023.}}
+
* Partsch Paul Maria, (1854), '''Über den Meteorstein-Niederfall unweit [[Mezö-Madaras]] in Siebenbürgen am 4. September 1852''', ''{{!Sitzber.Wien}}'', 11, 1854, s. 674-675. Plik [http://www.biodiversitylibrary.org/item/30075 DjVu].
 +
* Partsch Paul Maria, (1854), '''Meteorsteinfall unweit [[Mezö-Madaras]] in Siebenbürgen''', ''{{!AnP}}'', 91, Bd.&nbsp;167, 1854, s.&nbsp;627-628. Plik {{Djvu|Partsch_1854_(AnP_91_167).djvu|DjVu}}.
 +
 +
* {{Tokody (1951) |page=39}}
 +
 +
* {{Török (1882a)}}
 +
 +
* {{Török (1882b)}}
 +
 +
* Wöhler Friedrich, (1855), '''Analyse der Meteorsteine von [[Mezö-Madaras]] in Siebenbürgen''', ''{{!Sitzber.Wien}}'', 17, 1855, s. 284-287. Plik [http://www.biodiversitylibrary.org/item/107747 DjVu].
 +
 +
{{Koblitz References | 1=After the appearance of a luminous meteor, and detonations, a shower of many stones fell, of which the largest weighed about 10kg and the total weight was about 22.7kg, W.Knöpfler, Verh. Mitt. Siebenbürg. Ver. Naturwiss., Hermannstadt, 1853, 4, p.19, M.H.Hey, Cat. Met., 1966, p.303. Analysis, C.Rammelsberg, Ber. Deutsch. Geol. Gesell. Berlin, 1871, 23, p.734. Porosity and density, K.Keil, Chem. Erde, 1962, 22, p.281; see also, D.T.Britt and G.J.Consolmagno, MAPS, 2003, 38, p.1161. Study of Fe-rich silicates, contains merrihueite, R.T.Dodd et al., Am. Miner., 1966, 51, p.1177. Kr isotopic composition, O.Eugster et al., Earth Planet. Sci. Lett., 1967, 2, p.385. A polymict breccia, W.R.Van Schmus, GCA, 1967, 31, p.2027. Mineralogy and composition of xenoliths, R.A.Binns, GCA, 1968, 32, p.299. Analysis, 21.6% total Fe, E.Jarosewich, GCA, 1967, 31, p.1103. Unequilibrated and unmetamorphosed, G.Kurat, GCA, 1967, 31, p.1843, Meteorite Research, ed. P.M.Millman, D.Reidel, Dordrecht-Holland, 1969, p.185. Modal analysis, G.Dörfler and H.G.Hiesböck, Meteorite Research, ed. P.M.Millman, D.Reidel, Dordrecht-Holland, 1969, p.669. Li isotopic composition, R.Bernas et al., Meteorite Research, ed. P.M.Millman, 1969, p.123. Al-26 data, K.Fuse and E.Anders, GCA, 1969, 33, p.653. Volatile trace element abundances, R.R.Keays et al., GCA, 1971, 35, p.337; see also, D.R.Case et al., GCA, 1973, 37, p.19. Uranium content, D.E.Fisher, GCA, 1972, 36, p.15. Partial INAA, R.A.Schmitt et al., Meteoritics, 1972, 7, p.131. Contains spinels, G.Hoinkes and G.Kurat, Meteoritics, 1973, 8, p.383 (abs.). Pb isotopic ratios, G.R.Tilton, Earth Planet. Sci. Lett., 1973, 19, p.321. Ga and Ge contents of metal phase, C.-L.Chou and A.J.Cohen, GCA, 1973, 37, p.315. Infrared photometry, albedo, JHK colors, M.Leake et al., Meteoritics, 1978, 13, p.101. Size frequency distributions of fluid drop chondrules, T.V.V.King and E.A.King, Meteoritics, 1979, 14, p.91. Ti, Zr and Hf abundances, M.Shima, GCA, 1979, 43, p.353. Metallographic cooling rate, E.R.D.Scott and R.S.Rajan, LPSC, 1980, 11, p.1015 (abs.). Ni and Co contents of matrix kamacite, F.Afiattalab and J.T.Wasson, GCA, 1980, 44, p.431. Subclassification, TL data, C.L.Melcher et al., Meteoritics, 1980, 15, p.332 (abs.); see also, E.Anders and M.G.Zadnik, GCA, 1985, 49, p.1281. Study of fine-grained, opaque silicate matrix, G.R.Huss et al., GCA, 1981, 45, p.33. Study of metal grains in host and lithic fragments, E.R.D.Scott and R.S.Rajan, GCA, 1981, 45, p.53. Study of shock hardening of kamacite and taenite, P.Lambert et al., LPSC, 1981, 12, p.583 (abs.). Pb isotopic composition, D.M.Unruh et al., LPSC, 1981, 12, p.1109 (abs.). Magnetic properties, N.Sugiura and D.W.Strangway, Mem. Nat. Inst. Polar Res., Tokyo, 1982, (25), p.260. Carbon content and isotopic composition, M.M.Grady et al., J. Geophys. Res., 1982, 87 (suppl.), p.A289; see also, Meteoritics, 1989, 24, p.147, J.Makjanic et al., Meteoritics, 1993, 28, p.63. D/H ratio, N.J.McNaughton et al., J. Geophys. Res., 1982, 87 (suppl.), p.A297. Cooling rate calculation for metal-troilite grains, E.R.D.Scott, GCA, 1982, 46, p.813. Chemical composition and texture of matrix and chondrule rims, S.Matsunami, Mem. Nat. Inst. Polar Res., Tokyo, 1984, (35), p.126. Analysis of phosphate-bearing microspherules, H.Yabuki and A.El Goresy, Mem. Nat. Inst. Polar Res., Tokyo, 1986, (41), p.235. Study of silica-bearing clast, C.A.Brigham et al., GCA, 1986, 50, p.1655. Siderophile element data, D.W.G.Sears and K.S.Weeks, GCA, 1986, 50, p.2815. Grain size and texture of chondrule populations, P.C.Buchanan, LPSC, 1988, 19, p.142 (abs.). Mössbauer analysis of iron oxidation, T.C.Solberg and R.G.Burns, LPSC, 1988, 19, p.1103 (abs.). Study of carbon-bearing inclusion, M.Christophe Michel-Levy, Meteoritics, 1988, 23, p.45. Petrofabrics and magnetic anisotropy, D.S.Sneyd et al., Meteoritics, 1988, 23, p.139. Mineralogy and oxygen isotopic data of matrix lumps, C.E.Nehru et al. Meteoritics, 1991, 26, p.377 (abs.). Study of alkali fractionation among chondrules, J.A.Wood, Meteoritics, 1991, 26, p.410 (abs.). Oxygen isotopic composition, R.N.Clayton et al., GCA, 1991, 55, p.2317. Bulk density and porosity, M.Terho et al., Studia Geophysica et Geodaedica, 1993, 37, p.65; see also, D.T.Britt and G.J.Consolmagno, MAPS, 2003, 38, p.1161. Listed, with find location, Y.Miura et al., Papers 19th Symp. Ant. Met., NIPR Tokyo, 1994, p.5. Tl and Pb abundances, J.H.Chen and G.J.Wasserburg, LPSC, 1994, 25, p.245. Study of slica-roedderite-bearing chondrule, A.N.Krot and J.T.Wasson, Meteoritics, 1994, 29, p.707. Noble gas composition of high-purity separates of presolar diamonds, G.R.Huss and R.S.Lewis, Meteoritics, 1994, 29, p.791. REE abundance pattern, K.Shinotsuka and M.Ebihara, LPSC, 1995, 26, p.1293 (abs.). Noble gas analyses of acid-resistant residue, diamond and SiC contents, G.R.Huss and R.S.Lewis, GCA, 1995, 59, p.115. Potassium isotopic composition, M.Humayun and R.N.Clayton, GCA, 1995, 59, p.2131. Nitrogen and noble gas isotopic composition, K.Hashizume and N.Sugiura, GCA, 1995, 59, p.4057. Volatile abundances and release temperatures, D.W.Muenow et al., Meteoritics, 1995, 30, p.639. Isotopic molecule mass compositions of nitrogen, N.Sugiura et al., Meteoritics, 1995, 30, p.646. Analysis of P1 noble gases in acid residues by stepped pyrolysis, G.R.Huss et al., GCA, 1996, 60, p.3311. Carbon and nitrogen isotopic composition of graphite grains measured by SIMS, N.Sugiura and K.Kiyota, Papers 22nd Symp. Ant. Met., NIPR Tokyo, 1997, p.171 (abs.); see also, MAPS, 1997, 32, p.A126 (abs.). Sm and Gd isotopic composition, H.Hidaka et al., MAPS, 1997, 32, p.A59 (abs.). Light stable isotope composition of graphite-bearing assemblages, S.Mostefaoui et al., MAPS, 1997, 32, p.A94 (abs.). Hydrogen, carbon, and nitrogen isotopic composition of graphite, N.Sugiura and K.Kiyota, Papers 23rd Symp. Ant. Met., NIPR Tokyo, 1998, p.139 (abs.) Nitrogen and Argon isotopic composition, N.Sugiura et al., MAPS, 1998, 33, p.463. Analysis of oxygen isotopes in graphite, S.Mostefaoui et al., MAPS, 1998, 33, p.A113 (abs.). Nitrogen isotopic composition of graphite aggregates, K.Kiyota and N.Sugiura, LPSC, 1999, 30, abs. #1240. Determination of bulk density, S.L.Wilkison and M.S.Robinson, MAPS, 2000, 35, p.1203. Zr isotopic composition, M.Schönbächler et al., LPSC, 2002, 33, abs. #1283. Te isotopic composition, M.A.Fehr et al., LPSC, 2003, 34, abs. #1655. Magnetic susceptibility, P.Rochette et al., MAPS, 2003, 38, p.251. Nitrogen abundance and isotopic composition of metal phase, K.J.Mathew et al., GCA, 2005, 69, p.753. 144Nd, 147Sm and uranium isotopic composition, C.H.Stirling et al., GCA, 2005, 69, p.1059. Ag isotopes and Pd/Ag ratios, S.J.Woodland et al., GCA, 2005, 69, p.2153. Sn and Te abundances and Te isotopic composition, M.A.Fehr et al., GCA, 2005, 69, p.5099. Morphology and isotopic composition of graphite, S.Mostefaoui et al., MAPS, 2005, 40, p.721. Mössbauer and X-ray diffraction study, O.N.Menzies et al., MAPS, 2005, 40, p.1023.}}
{{Przypisy}}
{{Przypisy}}

Wersja z 22:18, 16 kwi 2014

Mezö-Madaras
Spadek
Lokalizacja Mădăraş, county Mureş, Harghita, Rumunia
Położenie[1] 46°30'N, 25°44'E
Data 4 września 1852 roku, 16:30 (sobota)
Charakterystyka
Typ chondryt zwyczajny L3.7
Masa 22,7 kg[2], największy okaz 10,1 kg[3]
Liczba okazów deszcz meteorytów
Meteoritical Bulletin Database
Synonimy
w NHM Cat: Fekete, Madaras, Maros, Mezoe-Madaras, Mezö-Madarasz, Weiler; po węgiersku: Mădăraş (Mezőmadaras)

Spadek deszczu meteorytów 4 września 1852 roku (sobota) w okolicy miejscowości Mădăraş w Rumunii (chondryt zwyczajny, rzadki typ L3.7, TKW 22,7 kg[2]).

Nie ma informacji o ewentualnych późniejszych znaleziskach okazów z tego spadku.


Okazy i fragmenty meteorytu Mezö-Madaras w największych kolekcjach:

Zbiór waga okazów
(Koblitz MetBase)
uwagi
Vienna, Naturhist. Mus. 8,96 kg (main mass)[3]
Berlin, Mus. Naturk., Humboldt Univ. 2,72 kg
Budapest, Nat. Mus. 1813 g fotografia okazu
Tübingen, Min.-Petrogr. Inst. 1642 g
London, Nat. Hist. Mus. 700 g
Moscow, Acad. Sci. 612 g
Tempe, Arizona State Univ. 555 g
Calcutta, Mus. Geol. Surv. India 538 g
Budapest, Eötvös Lorand Univ. 435 g
(…)

Brak okazów tego meteorytu w polskich kolekcjach.

Lokalizacja

Źródło: Wiki.Meteoritica.pl
© Jan Woreczko & Wadi

(M) Mădăraş

Jezioro Isten-tó

* W 2018 roku Google zmieniło zasady działania apletu, mapa może wyświetlać się niepoprawnie (pomaga Ctrl+F5); więcej → Szablon:GEMap-MyWiki

Bolid poruszał się w kierunku SW-NE. Towarzyszyły mu wybuchy i dudniące grzmoty (słyszane były w miejscowościach od Alba Iulia, Aiud, Turda, Cluj-Napoca do Târgu Mureş, Reghin). Deszcz meteorytów spadł w eliptycznym obszarze o długości ~10 km i ok. 4 km szerokości. Świadkowie pracujący w pobliżu jeziora Isten (Isten-tó), słyszeli świst i widzieli kamienie spadające do południowej części jeziora. Wielkość okazów wzrosła z SW na NE.


Mapy


Galeria

Meteoryty ze zbiorów Muzeum Historii Naturalnej w Budapeszcie (fot. Wadi & Jan Woreczko)


Bibliografia

  • Knöpfler Wilhelm, Partsch Paul Maria, (1854), Anszug aus dem ämtlichen Berichte über den am 4. September 1852 bei Mezö-Madaras in Siebenbürgen stattgehaben Meteoriten-Fall, w: Über den Meteorstein-Niederfall unweit Mezö-Madaras in Siebenbürgen am 4. September 1852, Sitzungsberichte der Mathematisch-Naturwissenschaftliche Classe Kaiserlichen Akademie der Wissenschaften, 11, 1854, s. 675-681. Plik DjVu.
  • Koblitz Jörn, MetBase. Meteorite Data Retrieval Software, Version 7.3 (CD-ROM), Ritterhude, Germany 1994-2012. MetBase.
  • Partsch Paul Maria, (1854), Über den Meteorstein-Niederfall unweit Mezö-Madaras in Siebenbürgen am 4. September 1852, Sitzungsberichte der mathematisch-naturwissenschaftliche Classe der Kaiserlichen Akademie der Wissenschaften, 11, 1854, s. 674-675. Plik DjVu.
  • Partsch Paul Maria, (1854), Meteorsteinfall unweit Mezö-Madaras in Siebenbürgen, Annalen der Physik, 91, Bd. 167, 1854, s. 627-628. Plik DjVu
    Źródło: Wiki.Meteoritica.pl
    .
  • Tokody László, Dudichné Vendl Mária, (1951), Magyarország meteoritgyűjteményei (Meteorite collections in Hungary), Akadémiai Kiadó, Budapest 1951, ss. 102, (s. 39). Plik GIF.
  • Török József, (1882a), A Magyar Birodalom meteoritjei (I. rész), Természettudományi Közlöny, XIV (159), 1882, s. 433-442. Plik DjVu
    Źródło: Wiki.Meteoritica.pl
    ; plik PDF.
  • Török József, (1882b), A Magyar Birodalom meteoritjei (II. rész), Természettudományi Közlöny, XIV (160), 1882, s. 497-514. Plik PDF.
  • Wöhler Friedrich, (1855), Analyse der Meteorsteine von Mezö-Madaras in Siebenbürgen, Sitzungsberichte der mathematisch-naturwissenschaftliche Classe der Kaiserlichen Akademie der Wissenschaften, 17, 1855, s. 284-287. Plik DjVu.


Przypisy

  1. ^ jeśli nie zaznaczono inaczej, podano współrzędne przyjęte w oficjalnej bazie meteorytów Meteoritical Bulletin Database
  2. ^ a b szacuje się, że spadło 50-60 kg
  3. ^ a b największy okaz (fragment) 10,1 kg (18 funtów) znajduje się w Muzeum Historii Naturalnej w Wiedniu

Zobacz również

Linki zewnętrzne

Osobiste