(Unless otherwise stated, the copyright of the materials included belong to Jan Woreczko & Wadi.)
Szablon:Woźniak (2021, ASMP)
Z Wiki.Meteoritica.pl
Woźniak Marek, (2021), Meteoryty żelazne – klasyfikacja w obrazach (Iron meteorites – classification in pictures), Acta Soc. Metheor. Polon., 12, 2021, s. 149-216 (abstrakt).[1] Plik ASMP; Książka abstraktów.
Abstract: Iron meteorites are meteorites whose main constituent is iron (Fe) and nickel (Ni), which occur in two forms of Fe-Ni minerals – kamacite and taenite. Since their composition makes them more resistant to shattering (crushing), and they are more challenging to ablate when passing through the atmosphere, they statistically fall in the form of larger lumps than stone or iron-stone meteorites. Their metallic structure and highly high weight make them easy to distinguish from ordinary rocks. The mass of all known iron meteorites is over 500 tons, which is ~89% of known meteorites, but falls of iron meteorites account for only 4.56% of all observed falls (wiki.meteoritica.pl). The ten largest meteorites in the world are iron meteorites! In the past, the term siderite was used to describe iron meteorites.
The classification of iron meteorites is based on two criteria. The older method is based on the average nickel content and the crystal structure revealed on cut and etched surfaces, the so-called the Thomson-Widmanstätten patterns. In this division, we distinguish three groups: hexahedrites (4–6 wt.% Ni), the most popular octahedrites (6–12 wt.% Ni) and ataxites (>12 wt.% Ni).
The second, more recent method of classifying iron meteorites is based on their chemical composition, in particular the content of trace elements such as germanium (Ge), gallium (Ga), platinum (Pt), arsenic (As), gold ( Au) and iridium (Ir). Another parameter that defines the groups of iron meteorites is their mineral composition. “Indicator” minerals are in the form of various compounds and multiple shapes and sizes: sulfides, phosphides, carbides, nitrides, and silicate inclusions. Trace element content versus nickel content reveals chemical clusters representing the different chemical groups of iron meteorites. Some of the iron meteorites come from the partially differentiated asteroid ruptured at the beginning of forming the iron core and the silicate-rich shell (these are groups IAB and IIE). The remaining meteorites from other groups come from the nuclei of minor differentiated asteroids, shattered in collisions shortly after formation.
Keywords: iron meteorites, classification, trace elements, hexahedrites, octahedrites, ataxites, parent body, cooling rate, meteorite mineralogy, Morasko, Tartak, Schwetz, Seeläsgen, Tabarz
Streszczenie: Meteoryty żelazne to grupa meteorytów, których głównym składnikiem jest żelazo (Fe) i nikiel (Ni), występujące w dwóch formach stopu Fe-Ni – kamacytu i taenitu. Ponieważ ich skład czyni je bardziej odpornymi na rozbicie (kruszenie) i trudniej ulegają procesowi ablacji przy przelocie przez atmosferę, więc statystycznie spadają one w postaci większych brył niż meteoryty kamienne lub żelazno-kamienne. Ich metaliczna budowa i wyjątkowo duża waga czynią z nich meteoryty łatwe do odróżnienia od zwykłych skał. Masa wszystkich znanych meteorytów żelaznych wynosi ponad 500 ton, co stanowi ~89% masy znanych meteorytów, ale spadki meteorytów żelaznych stanowią już tylko 4,56% wszystkich obserwowanych spadków. Dziesięć największych okazów meteorytów na świecie to meteoryty żelazne! Dawniej na określenie meteorytów żelaznych używano określenia syderyt (siderite).
Podziału meteorytów żelaznych dokonuje się według dwóch kryteriów. Starsza metoda bazuje na średniej zawartości niklu i na strukturze krystalicznej ujawniającej się na przeciętych i wytrawionych powierzchniach tzw. figury Thomsona-Widmanstättena. Przy takim podziale wyróżniamy trzy grupy: heksaedryty (hexahedrites) (śr. 4–6wt.% Ni), najpopularniejsze oktaedryty (octahedrites) (śr. 6–12wt.% Ni) oraz ataksyty (ataxites) (>12wt.% Ni).
Druga, nowsza metoda klasyfikacji meteorytów żelaznych, opiera się na ich składzie chemicznym, w szczególności na zawartości pierwiastków śladowych (trace elements), takich jak german (Ge), gal (Ga), platyna (Pt), arsen (As), złoto (Au) i iryd (Ir). Drugim parametrem definiującym grupy meteorytów żelaznych jest ich skład mineralny. Minerałami „wskaźnikowymi” są występujące w formie różnych związków oraz w różnej formie i wielkości: siarczki, fosforki, węgliki, azotki i inkluzje krzemianowe. Zawartość pierwiastków śladowych versus zawartość niklu ujawnia chemiczne klastry (skupienia, clusters) reprezentujące różne chemiczne grupy meteorytów żelaznych. Część meteorytów żelaznych pochodzi z częściowo zdyferencjonowanych planetozymali rozerwanych na początku formowania żelaznego jądra i bogatej w krzemiany skorupy (to grupy IAB i IIE). Pozostałe meteoryty z innych grup pochodzą z jąder małych całkowicie zdyferencjonowanych planetozymali, rozbitych w zderzeniach, krótko po uformowaniu się.
Spis treści |
Ilustracje
Więcej → woreczko.pl – Meteoryty żelazne – klasyfikacja w obrazach (Iron meteorites – classification in pictures).
patrz → Bohumilitz, Kaalijarv, Magura, Morasko |
patrz → Bohumilitz, Kaalijarv, Magura, Morasko |
||
Relacja między zawartością niklu a szerokością belek kamacytu w meteorytach żelaznych (z wyłączeniem podgrup grupy IAB) (Relation between the nickel content and the kamacite lamellae size in iron meteorites (excluding the IAB subgroup)) |
Para pierwiastków nikiel i german jest silnie skorelowana oraz ma silne własności dyskryminujące. Wykres ten ilustruje również początkową ideę podziału meteorytów żelaznych na grupy ponumerowane rzymskimi liczbami I-IV (Nickel vs. germanium diagram, the strong, positive correlation is visible. This diagram illustrates the early idea of iron meteorites classification groups, numbered by the use of Roman numerals I-IV) |
Para pierwiastków gal i german jest silnie skorelowana oraz ma silne własności dyskryminujące. Wykres ten ilustruje również początkową ideę podziału meteorytów żelaznych na grupy ponumerowane rzymskimi liczbami I-IV (Gallium vs. germanium diagram, the strong, positive correlation is visible. This diagram illustrates the early idea of iron meteorites classification groups, numbered by the use of Roman numerals I-IV) |
Para pierwiastków gal i kobalt (Gallium vs. cobalt diagram); patrz → meteoryty żelazne typu IID |
|
Wybrane typy meteorytów żelaznych
Meteoryty żelazne typu IAB
O meteorytach żelaznych typu IAB (Woźniak 2021):
Grupa IAB
Grupa IAB – należy, obok grupy IIE, do klasy achondrytów prymitywnych, do klanu winonaitów–IAB–IIE – grupy meteorytów żelaznych bogatych we frakcję krzemianową (silicate-bearing). Typu IAB są również metalowe klasty w winonaitach.
Grupa IAB jest najliczniejszą grupą meteorytów żelaznych. Powstała ona z połączenia wyróżnianych początkowo grup IA i IB oraz z włączenia do niej grupy IIICD (pierwotnie IIIC i IIID) (rys. 11):
- grupa IA – bardzo homogeniczna; zawiera meteoryty o zawartości Ge powyżej 190 ppm i równocześnie małej zawartości Ni; obecnie meteoryty tej grupy włączono w skład podgrup IAB-MG i IAB-sLL;
- grupa IB – silnie zróżnicowana; zawiera meteoryty o zawartości Ge poniżej 190 ppm i większej zawartości Ni; obecnie meteoryty tej grupy włączono w skład podgrup IAB-sHH, IAB-sHL;
- grupa IIIC – o niskiej zawartości Ge i średniej zawartości Ni; obecnie to podgrupa IAB-sLM;
- grupa IIID – o bardzo niskiej zawartości Ge i wysokiej zawartości Ni; obecnie to podgrupa IAB-sLH.
Podział ten ma swoje uzasadnienie przede wszystkim w składzie mineralnych i tempie stygnięcia (coolong rate) poszczególnych meteorytów tej grupy. Mimo, że mają one bardzo zróżnicowaną strukturę, od bardzo gruboziarnistych (Ogg) do bardzo drobnoziarnistych (Off), aż po bezstrukturowe ataksyty (ATAX), średnie tempo stygnięcia wynosi dla nich ok. kilkadziesiąt stopni ma milion lat.
Meteoryty grupy IAB charakteryzują się wysoką zawartością arsenu (As) i złota (Au). Warto podkreślić, że zawartość obu tych pierwiastków jest bardzo silnie skorelowana dodatnio dla wszystkich grup meteorytów żelaznych! (patrz Załącznik 2 i rys. 8).
Charakterystyczne dla tej grupy są liczne nodule troilitowe i grafitowe, kanciaste, nieregularne, duże inkluzje krzemianowe oraz występowanie węglików (cohenit, haxonit) (fot. 4). Liczne inkluzje krzemianowe ułatwiają wstępne rozpoznanie tej grupy. Duża część meteorytów tej grupy zawiera duże nodule troilitowo-grafitowe otoczone warstewkami schreibersytu i cohenitu. Grafit często towarzyszy troilitowi oraz tworzy też samodzielnie duże nodule (fot. 5). Cohenit tworzy otoczki nodul troilitowych oraz występuje w formie grup milimetrowej wielkości „pęcherzyków” (makrowytrąceń, macroprecipitates) zorientowanych wzdłuż belek kamacytu. Jest to też bardzo charakterystyczna cecha meteorytów grupy IAB. W grupie IAB występują też bardzo licznie makroskopowe wytrącenia (macroprecipitates) schreibersytu (fosforek), a w grupie IA stwierdzono występowanie rhabdytu. W grupie IA zaobserwowano również występowanie daubréelitu (siarczek) i carlsbergitu (azotek). Stwierdzono w meteorytach grupy IAB występowanie chromitu (spinel), fosforanów (brianit, buchwaldyt, czochralskiit, moraskoit) i sfalerytu (siarczek).
Kanciaste (angular) inkluzje krzemianowe mogą stanowić do 15% objętości meteorytu. Składają się one głównie z oliwinu (Fa1-8), ortopiroksenu (Fs4-9) i plagioklazu (Ab76-87). Inkluzje te mają w przybliżeniu chondrytową mineralogię i są bardzo podobne, pod względem mineralogicznym i składu izotopowego tlenu (Δ17O i δ18O), do winonaitów. W okazach meteorytów bogatych w inkluzje krzemianowe ciągłość figur Thomsona-Widmanstättena rzadko przekracza odległość 15 mm, jest to prawdopodobnie spowodowane przerwaniem ciągłości wzrostu ziaren taenitu?
Najnowsze oszacowania średniego tempa stygnięcia stopu Fe-Ni dla grupy IAB (jej bogatszych w nikiel członków) dają wartość 10-30ºC na milion lat. Skład izotopowy metalu meteorytów grupy IAB odpowiada składowi Ziemi, więc jej ciało macierzyste uformowało się w jej pobliżu (populacja NC).
Współcześnie meteoryty żelazne grupy IAB dzieli się na kilka podgrup, które mają bardzo zróżnicowaną zawartość pierwiastków śladowych i prawdopodobnie różne pochodzenie (różne ciała macierzyste).
Jest to zbiór (kompleks, complex) składający się z podgrup (grouplets): IAB-MG, IAB-sHH, IAB-sHL, IAB-sLH, IAB-sLL, IAB-sLM oraz podgrupy IAB-ung (ungrouped). Podział ten i przyjęte oznaczenia literowe opierają się na średniej zawartości niklu (Ni) i złota (Au) (rys. 12):
- IAB-MG (main group) – grupa główna, najliczniejsza; niska zawartość niklu i złota (zbliżona do zawartości w podgrupie IAB-sLL); największa spośród wszystkich meteorytów żelaznych zawartość galu i germanu;
- IAB-sHH – high Au, high Ni; razem z podgrupą IAB-sHL mają odmienny skład izotopów molibdenu od pozostałych podgrup;
- IAB-sHL – high Au, low Ni;
- IAB-sLH – low Au, high Ni; pierwotnie IIID; razem z podgrupą IAB-sLM mają taki sam skład izotopowy molibdenu, jak podgrupy IAB-MG i IAB-sLL; meteoryty tej podgrupy mają najniższą zawartość galu i irydu;
- IAB-sLL – low Au, low Ni; druga pod względem liczebności podgrupa; meteoryty tej podgrupy mają jedną z największych spośród wszystkich meteorytów żelaznych zawartość galu i germanu;
- IAB-sLM – low Au, medium Ni; pierwotnie IIIC;
- IAB-ung – niezgrupowne; w podgrupie tej wyodrębniono kilka par i trio (gruplets) podobnych meteorytów, które być może stanowią zalążki przyszłych nowych grup? (więcej o tych nie zatwierdzony jeszcze podgrupach w rozdziale o meteorytach anomalnych i niezgrupowanych);
- do grupy IAB zalicza się także: podgrupę IAB complex (IAB cplx) – zbiór meteorytów, które nie zostały zaklasyfikowane do żadnej z podgrup;
- oraz IAB-an – meteoryty anomalne;
- również IAB? – nieokreślone;
- wyróżniamy jeszcze 2 anomalne meteoryty po jednym w podgrupach IAB-sHL-an i IAB-sLM-an.
Najbardziej znani przedstawiciele grupy IAB to meteoryty: Toluca[2] (IAB-sLL, Og), Campo del Cielo[3] (IAB-MG, Og), Odessa[4] (IAB-MG, Og), Canyon Diablo[5] (IAB-MG, Og) i Mundrabilla[6] (IAB-ung, Om) (fot. 2, 6 i 8) [oraz Bohumilitz, Kaalijarv, Magura, Nagy-Vázsony]. Większość jej członków to oktaedryty grubo- i średnioziarniste (Og, Om, ale zdarzają się i inne oktaedryty, a nawet ataksyty; patrz tabela 1 oraz rys. 2). Jest bardzo prawdopodobne, że meteoryty tej grupy pochodzą z różnych ciał macierzystych i mają różną historię powstania.
Oktaedryty gruboziarniste Morasko, Przełazy (Seeläsgen) i Tabarz były początkowo klasyfikowane jako IIICD, ale obecnie są w podgrupie IAB-MG i są uważane za sparowane (paired). (…)
Meteoryty żelazne typu IIAB
O meteorytach żelaznych typu IIAB (Woźniak 2021):
Grupa IIAB
Grupa IIAB – grupa ta powstała z połączenia dwóch wcześniej wyróżnianych grup IIA i IIB. Charakteryzują się one jedną z najniższych zawartości niklu spośród wszystkich meteorytów żelaznych[7], ale mają bardzo dużą zawartość galu i germanu w bardzo wąskim przedziale (wykres), przeciwnie niż zawarty w nich iryd występujący w zakresie niemal 4 rzędów wielkości (rys. 7)![8] Również w szerokim przedziale (3 rzędy wielkości) zawartości występuje pierwiastek ren (Re) (patrz Załącznik 2). Są to najczęściej heksaedryty (HEX) (grupa IIA) i oktaedryty bardzo gruboziarniste (Ogg) (grupa IIB).[9] W grupie tej znajduje się również ubogi w nikiel ataksyt (Ni-poor) Siratik. Zawartość pierwiastków śladowych sugeruje, że meteoryty grupy IIAB uformowały się z jądra zdyferencjonowanej planetoidy typu C rozbijanej w wielokrotnych zderzeniach. Średnie tempo stygnięcia wyznaczone z modeli wynosi dla tej grupy ~6-12 stopni ma milion lat (~6-12ºC/My).
Wielu członków grupy IIA to klasyczne „pojedyncze kryształy” kamacytu z widocznymi liniami Neumanna (fot 1) i euhedralnymi (dobrze wykształconymi, własnopostaciowymi kryształami, których wzrost nie był zakłócony przez inne kryształy) kryształami rhabdytu. Nodule siarczkowe są dość rzadkie i nigdy nie większe niż kilka milimetrów średnicy. W grupie IIA nodule i ziarna daubréelitu są wszechobecne. Obfitość w nich fosforków (schreibersyt) rośnie ze wzrostem zawartości niklu w grupie IIA i bardzo zauważalnie w IIB, tak, że w wysoko niklowych okazach obserwuje się centymetrowej wielkości „hieroglificzne wzory” schreibersytu. Cohenit i dwukrotnie obfitszy haxonit występują w nich w formie małych wytrąceń, które często rozpadły się do grafitu i nisko niklowego kamacytu. Ogólnie grafit w nich pochodzi wyłącznie z rozpadu węglików. Ziarna carlsbergitu są rzadkie. W okazach [10] (dawniej IIA, HEX) i [11] (dawniej IIA, HEX) zaobserwowano ziarna kosmochloru (dawniej ureyit, NaCr[Si2O6]) w towarzystwie daubréelitu (Scott et al. 1975; Wasson et al. 2009).
Nie zaobserwowano w nich inkluzji krzemianowych, ale w okazach meteorytów Sikhote-Alin i Sierra Gorda zdarzają się małe wtrącenia krzemianowe (Wasson et al. 2007).
Najbardziej znani przedstawiciele tej grupy to spadki: Sikhote-Alin[12] (IIB-an, obecnie IIAB, Ogg), Boguslavka[13] (dawniej IIA, HEX) (fot 1) i Braunau (dawniej IIA, HEX) oraz znaleziska Agoudal (HEX), Veevers (dawniej IIB, Ogg) i North Chile[14] (dawniej IIA, HEX).
Meteoryty żelazne typu IIIAB
O meteorytach żelaznych typu IIIAB (Woźniak 2021):
Grupa IIIAB
Grupa IIIAB – początkowo wyróżniano dwie grupy IIIA i IIIB, ale struktura i skład pierwiastkowy wskazują na ich wspólne pochodzenie z różnych części jądra tego samego ciała macierzystego. Meteoryty z grupy IIIA to najczęściej oktaedryty średnioziarniste (Om) i gruboziarniste (Og), natomiast z grupy IIIB to wyłącznie oktaedryty średnioziarniste (Om) (w grupie tej znajdują się również meteoryt Yarovoye który jest Of (fot. 1), a meteoryt Juromenha z tej grupy to ataksyt). Ciekawostką jest fakt, że grubość belek kamacytu dla grupy IIIB rośnie, a dla grupy IIIA maleje, wraz ze wzrostem zawartości niklu (rys. 1)! Również charakterystyczna dla grupy IIIAB jest nietypowa korelacja par pierwiastków śladowych. Dla większości grup jest ona „prostoliniowa”, ale dla IIIAB widać wyraźnie dwa „prostoliniowe trendy” korelacji! Szczególnie jest to widoczne dla par Ni-Ga i Ir-Au. Także na wykresie zawartości irydu i złota widać lokalne „deficyty” meteorytów o zawartości niklu 7,5-8% (rys. 15).
Wiele meteorytów grupy IIIAB zawiera duże nodule troilitowe i grafitowe (obserwowane na przykład w okazach meteorytów Cape York, Willamette oraz El Sampal), natomiast inkluzje krzemianowe są w nich bardzo, bardzo rzadkie. Współczesne badania łączyły grupę IIIAB z pallasytami grupy głównej (pallasite main group, PMG) bogatymi w krzemiany, jako pochodzącymi z jednego ciała macierzystego rozbitego podczas pojedynczego zderzenia – IIIAB pochodziłyby z jądra, a pallasyty PMG z granicy pomiędzy jądrem i płaszczem (mantle boundary). Ale obliczone średnie tempo stygnięcia (cooling rate) dla grupy IIIAB wynoszące ~20-350 stopni na milion lat (~20-350ºC/My) stoi w sprzeczności do szacowanego tempa dla PMG wynoszącego 2,5-18ºC/My. Jądro (core) ewentualnej wspólnej planetozymali nie mogło stygnąć szybciej od granicy jądra i płaszcza. Trzeba jednak pamiętać, że przyjęte wartości tempa stygnięcia wyliczone różnymi metodami dają bardzo rozbieżne wyniki! Hipoteza wspólnego pochodzenia IIIAB i PMG ma jednak silny argument za, gdyż średnie wartości izotopów tlenu (Δ17O i δ18O) obu grup IIIAB i PMG, są bardzo zbliżone – pallasyty PMG izotopowo są niemal nie do odróżnienia od żelazna IIIAB. Warto wspomnieć, że również podobne wartości izotopów tlenu łączą ze sobą mezosyderyty i achondryty grupy HED (Goldstein et al. 2009; Scott 2020).
Troilit i jego nodule są liczniejsze w IIIB niż w IIIA (ale nie mają one w ogólności więcej niż 1 cm), podobnie jest ze schreibersytem (w IIIA stwierdzono jeszcze rhabdyt). Natomiast odwrotnie jest z daubréelitem, jest on liczniejszy w IIIA niż w IIIB. W IIIA stwierdzono występowanie cohenitu, grafitu i carlsbergitu, których nie ma w IIIB. W całej grupie nie występuje haxonit. W meteorytach tych obserwuje się tzw. lamele Reichenbacha (ang. Reichenbach lamellae) – są to wydłużone inkluzje składające się głównie z troilitu domieszkowanego daubréelitem i rzadkimi ziarnami grafitu i krzemianów. Schreibersyt występuje w postaci lamelek Breziny (ang. Brezina lamellae) (to wielocentymetrowe listwy schreibersytu) oraz jako otoczki nodul troilitowych. W okazach grupy IIIAB powszechne są linie Neumanna (deformacje kryształów kamacytu), które powstawały podczas licznych zderzeń jakim musiało ulegać ciało macierzyste meteorytu. Podczas zderzeń przy ciśnieniach >13 GPa kamacyt przekształca się w zwartą gęsto upakowaną sześciokątną fazę ε-żelaza (epsilon-iron, hexaferrum; hpc, hexagonal close-packed). Po spadku ciśnienia kamacyt wraca do formy bcc (body-centered cubic). Ponieważ sieć została zniekształcona, więc po wytrawieniu na powierzchnie kamacytu występuje charakterystyczny wzór linii Neumanna widoczny w świetle odbitym (fot. 1). Grupy linii tworzą ze sobą kąt 120º (Scott et al. 1975; Malvin et al. 1984; Scott 2020).
Jest to druga pod względem liczebności po IAB grupa meteorytów żelaznych. Do grupy tej należą największe z meteorytów: Cape York[16] (dawniej IIIA), Chupaderos[17] (dawniej IIIB), Morito (dawniej IIIA), Willamette[18] (dawniej IIIA) oraz meteoryty kraterotwórcze: Boxhole[19] (dawniej IIIA), Henbury[20] (dawniej IIIA), Wabar[21] (dawniej IIIA) i Wolf Creek[22] (dawniej IIIB).
Najpopularniejsze meteoryty grupy IIIAB to: Boxhole[19], El Sampal (dawniej IIIB), Henbury (fot. 1), Yarovoye oraz polskie Schwetz (Świecie) (dawniej IIIA) i niedawno znaleziony i sklasyfikowany Tartak (fot. 15). Znany spadek tego typu to Juromenha[23] (dawniej IIIA) [oraz Lenarto, Teplá].
Rzadki typ IID
Meteoryt [nazwa meteorytu] należy do rzadkiego typu meteorytów żelaznych IID. W bazie Meteoritical Bulletin Database jest zarejestrowanych tylko 26 meteorytów tego typu (stan: luty 2021 r.).[24]
Na Europę przypada ich aż 6: dwa spadki – Elbogen (Czechy) i Hraschina (Chorwacja) oraz znaleziska – Vicenice, Alt Bela (oba też z Czech!) oraz Cheder[25] (Rosja/Azja) i Orlov Dol (Bułgaria). Więc aż 3 meteoryty typu IID przypadają na niewielkie Czechy! Na terenie dużo większych Stanów Zjednoczonych[26] znaleziono ich tylko 7, a spośród dziesiątków tysięcy meteorytów znalezionych na Antarktydzie tylko 2 są tego typu (m.in. meteoryt Miller Butte 03002[27]).
Trzy czeskie meteoryty typu IID mają (podejrzanie?!) bardzo podobny skład. Są one również od siebie „nieodległe” – miejsca spadku/znalezienia meteorytów Elbogen i Vicenice leżą od miejsca znalezienia okazu Alt Bela odpowiednio o: 398 i 166 km!
Pierwiastki śladowe (ang. trace elements) w meteorytach grupy IID (za Koblitz MetBase oraz Meteoritical Bulletin Database; kompilacja wyników z różnych publikacji):
Meteoryt Ni
[mg/g]Ga
[μg/g]Ge
[μg/g]Ir
[μg/g]Co
[mg/g]Au
[ng/g]P
[mg/g]bandwidth
[mm]Vicenice (Czechy, znalezisko 1911 rok, 4,65 kg) 97,7 74,8 87,4 12,7 6,8 773 2,7 0,63-0,80 Elbogen (Czechy, spadek ~1400 rok, ~107 kg) 102 75 87 14 6,4 – 2,2 0,75 Alt Bela (Czechy, znalezisko 1898 rok, ~4 kg) 100,4 75 84 16 – – – 0,70 oraz Cheder[25] (Rosja/Azja, znalezisko 2003 rok, 5,39 kg) 72,4 – – 16,9 4,4 500 – 1,0-1,5 Hraschina (Chorwacja, spadek 1751 rok, ~49 kg) 106 75 89 13 – – – 0,70 Orlov Dol (Bułgaria, znalezisko 2018 rok, 151 kg) 98,7 70,5 – 18,9 6,66 602 – 0,83±0,21
Jest to stosunkowo mało liczna grupa meteorytów, ale rozrzut wartości zawartości pierwiastków śladowych wewnątrz niej jest większy, niż dla tych trzech meteorytów żelaznych z Czech!
Okazy meteorytów Alt Bela, Elbogen i Vicenice są do siebie bardzo podobne w formie – są to „kartoflaste” bryły bez regmagliptów – oraz mają podobny stopień i charakter zwietrzenia. Również wszystkie one są oktaedrytami średnioziarnistymi (Om – medium octahedrite)!
Ciekawostka: Do tego rzadkiego typu należy również meteoryt anomalny IID-an Los Vientos 189, polskie znalezisko na pustyni Atakama w Chile! Znalazcami był team Magda Skirzewska i Łukasz Smuła (Art&Met).
Meteoryty żelazne typu IID
O meteorytach żelaznych typu IID (Woźniak 2021):
Grupa IID
Grupa IID – okazy meteorytów tej grupy to oktaedryty średnio- i drobnoziarniste (Om i Of) (z wyjątkiem anomalnego ataksytu Arltunga (IID-an)). Meteoryty w tej grupie mają jedną z największych zawartości galu spośród wszystkich meteorytów żelaznych, jego średnia wartość wynosi ok. 75 μg/g i ustępują tylko meteorytom typu IA (rys. 4 oraz Załącznik 2). Tempo stygnięcia ich ciał macierzystych wynosiło zaledwie ok. 1-2 stopnie na milion lat (1-2ºC/My).
Schreibersyt jest w nich popularny, jego obfitość rośnie ze wzrostem zawartości niklu. Zawartość troilitu jest podobna do zawartości w grupie IIC, ale jest mniejsza niż w grupie IIIAB. Nodule troilitowe większe niż 1 cm są rzadkie. Brak cohenitu, ale występuje haxonit w polach plessytowych. Tylko jeden meteoryt tej grupy, Elbogen zawiera grafit, ale występowanie martensytowych obszarów w innych meteorytach grupy IID sugeruje, że grafit jest dość popularny w tej grupie. Stwierdzono małe ziarna krystobalitu w meteorycie Carbo, jako małe 0,5 mm zielone szkliste krople w jego nodulach troilitowych. Nie zaobserwowano występowania carlsbergitu, natomiast inkluzje krzemianowe są bardzo rzadkie. W grupie są tylko trzy[28] meteoryty anomalne: Arltunga (ATAX), Los Vientos 189 (Om, polskie znalezisko!) i NEA 002 (Of). W meteorycie Arltunga (ATAX) belki kamacytu są bardzo wąskie, ~0,005 mm, 100 razy mniejsze niż w oktaedrytach drobnoziarnistych, ale pierwiastki śladowe lokują go w obszarze nisko-niklowych IID (Scott et al. 1975; Wasson et al. 2006)!
W 1808 roku podczas trawienia dwóch meteorytów z tej właśnie grupy – Hraschiny i Elbogen – austriacki drukarz i naukowiec Count Alois von Beckh Widmanstätten zaobserwował po raz pierwszy słynne figury.
Najpopularniejsze meteoryty tej grupy to: Elbogen (Om), Hraschina (Om), Arltunga (IID-an, ATAX), Carbo (Om) oraz Alt Bela (Om) [oraz Rodeo[29]; w meteorycie typu IID Needles Buchwald (1975) opisuje lamele Breziny].
Meteoryty żelazne typu IVA
O meteorytach żelaznych typu IVA (Woźniak 2021):
Grupa IVA
Grupa IVA – grupa o najniższej wśród meteorytów żelaznych zawartości kobaltu (Co) oraz bardzo niskiej zawartości germanu i galu (rys. 6). Zawartość niklu rzadko przekracza w nich 10% (100 ppm) (rys. 17). Wszystkie meteoryty tej grupy to oktaedryty drobnoziarniste (Of).[30] Na wykresach Ni-Ga i Ni-Ge grupa jest silnie izolowana i bardzo zwarta – wartości dla Ga i Ge są w wąskim przedziale. Zawartość galu jest w grupie IVA kilkanaście razy większa od zawartości germanu! (rys. 4) (odwrotnie niż w grupie IIF, gdzie przeważa german).
Charakterystyczny dla tej grupy jest nieznaczny wzrost szerokości belek kamacytu wraz ze wzrostem zawartości niklu (rys. 1), takiej dodatniej korelacji nie obserwuje się dla innych grup, gdzie korelacja jest ujemna! Może to sugerować, że grupa IVA składa się z dwóch podgrup pochodzących z różnych ciał macierzystych?! Na poparcie tej tezy świadczą obserwacje pewnych luk (gap) w zawartościach niklu i irydu, które mogą sugerować istnienie dwóch podgrup (rys. 15). Również modelowanie formowania się struktur Thomsona-Widmanstättena dla grupy IVA wskazują na lukę w tempie stygnięcia ciała macierzystego. Badacze skłaniają się jednak ku twierdzeniu, że sugerowany podział na dwie podgrupy to artefakt i wynika z mało reprezentatywnej liczby próbek oraz z subiektywnego i niejednoznacznego pomiaru szerokości belek kamacytu.[31] Zagadnienie otwarte. Obliczone średnie tempo stygnięcia ciała macierzystego (stopu Fe-Ni) dla tej grupy wynosi ~100-6600 stopni ma milion lat (~100-6600ºC/My). Wartość najniższe dotyczą meteorytów z grupy IVA o dużej zawartości niklu, wartości najwyższe dotyczą meteorytów tej grupy o najniższej zawartości niklu.[32] Tak duże tempo stygnięcia znajduje również swoje odzwierciedlenia w morfologii pól plessytu obserwowanych w okazach z tej grupy. Zbliżone wartości izotopów tlenu (Δ17O i δ18O) dla meteorytów grupy IVA i chondrytów zwyczajnych typu L i LL, sugerowały ich wspólne pochodzenie. Ale obecnie hipoteza ta jest odrzucana, gdyż wydaje się mało prawdopodobne by żelazo i chondryty pochodziły z tego samego ciała, które dla pierwszych było całkowicie stopione, a te drugie nie uległy znacznemu stopieniu (Scott 2020).
W składzie meteorytów grupy IVA całkowicie brak cohenitu, haxonitu, grafitu i carlsbergitu. Bardzo rzadko obserwuje się małe inkluzje krzemianów. Schreibersyt jest rzadki, a w nisko niklowych członkach grupy nieobecny. Natomiast minerał daubréelit jest bardzo obfity, i dla nisko niklowych członków, jest najczęściej liczniejszy niż troilit. Sam troilit jest popularny oraz występuje w formie nodul (Scott et al. 1975).
Opisując skład mineralny członków tej grupy trzeba pamiętać, że należą do niej również nietypowe, anomalne meteoryty Steinbach i São João Nepomuceno, które swym składem i budową przysparzają tylko „kłopotów” naukowcom! Zawierają one tak dużo krzemianów, iż należałoby je właściwie klasyfikować jako żelazno-kamienne. Jednak skład chemiczny i tekstura ich metalowych części oraz wyznaczone tempo chłodzenia ściśle odpowiadają cechom grupy IVA. Ich frakcja metaliczna ma wyraźną strukturę oktaedrytu, ale ich wtrącenia krzemianowe są zagadką. Chociaż skład izotopowy tlenu w krzemianowej fazie przypomina ten dla chondrytów zwyczajnych typu L i LL, jednak jej mineralogia jest całkowicie niechondrytowa.
W meteorycie Gibeon zaobserwowano płytki polimorficznej odmiany kwarcu trydymitu, a meteoryt Muonionalusta zawiera płytki minerału wysokociśnieniowego stiszowitu, który prawdopodobnie pierwotnie był trydymitem. W okazach grupy IVA powszechne są linie Neumanna (Scott 2020).
Grupa jest liczna, zajmuje czwarte miejsce pod względem liczebności po grupach IAB, IIAB i IIIAB. Najbardziej znane meteoryty tej grupy to: Gibeon[33], Muonionalusta[34], Gan Gan, Zaragoza (IVA-an) (fot. 1) oraz nieudokumentowany Kaposfüred. Większość okazów meteorytów z tej grupy ma też bardzo ładny wzór figur Thomsona-Widmanstättena. Do grupy tej należy też już wspomniany wyjątkowej urody anomalny Steinbach (IVA-an) (fot. 7).
Meteoryty żelazne typu Iron
O meteorytach żelaznych typu Iron (Woźniak 2021):
Grupa Iron
W Meteoritical Bulletin Database wydzielono jeszcze grupę Iron. Znajdują się w niej tak egzotyczne meteoryt, jak te znalezione na Marsie (Aeolis Mons #, Aeolis Palus #, Gusev Crater #, Meridiani Planum #).[35] Do tej grupy zaliczono również polskie artefakty z żelaza meteorytowego Wietrzno-Bobrka i Czestochowa Rakow I i II oraz zaginiony meteoryt Krzadka.